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Abstract: New Ekpyrotic Cosmology is an alternative scenario of early universe cosmol-

ogy in which the universe existed before the big bang. The simplest model relies on two

scalar fields, whose entropy perturbation leads to a scale-invariant spectrum of density

fluctuations. The ekpyrotic solution has a tachyonic instability along the entropy field

direction which, a priori, appears to require fine-tuning of the initial conditions. In this

paper, we show that these can be achieved naturally by adding a small positive mass term

for the tachyonic field and coupling to light fermions. Then, for a wide range of initial

conditions, the tachyonic field gets stabilized with the appropriate values well before the

onset of the ekpyrotic phase. Furthermore, we show that ekpyrotic theory is successful in

solving the flatness, horizon and homogeneity problems of standard big bang cosmology.

Motivated by the analysis of the tachyonic instability, we propose a simplification of the

model in terms of new field variables. Instead of requiring two exponential potentials, one

for each scalar field, it suffices to consider a single nearly exponential potential for one of

the fields and a tachyonic mass term along the orthogonal direction in field space. All other

terms in the potential are essentially arbitrary. This greatly widens the class of ekpyrotic

potentials and allows substantial freedom in determining the spectral index and possible

non-Gaussianity. We present a generalized expression for the spectral index which is easily

consistent with the observed red tilt. We also argue that for a wide range of potentials

non-Gaussianity can be substantial, within the reach of current observations.
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1. Introduction

The ekpyrotic scenario [1 – 4] is an alternative theory to the standard inflationary big

bang paradigm. Instead of invoking a flash of exponential expansion shortly after the big

bang, ekpyrotic theory proposes that the universe started out in a cold state followed by

a long period of slow contraction. Despite this stark difference in dynamics, remarkably

the two models make identical predictions for the origin of structure formation: a nearly

scale-invariant, adiabatic and Gaussian spectrum of density perturbations. One testable

distinctive prediction is that inflation also generates scale-invariant primordial gravitational

waves whose amplitude in the simplest models is within reach of near-future microwave

background polarization experiments [5], whereas the ekpyrotic scenario does not [1, 6].

The idea of a pre-big bang contracting phase arising from nearly vacuous initial conditions

originated in the pre-big bang scenario of Gasperini and Veneziano [7].

Until recently, ekpyrotic theory suffered from two important drawbacks.

First, it was unknown how to describe a non-singular bounce within a consistent effec-

tive theory without introducing ghosts or other catastrophic instabilities [8]. This lead the

advocates of the Big Bang/Big Crunch ekpyrotic [2, 3] and cyclic models [9, 10] to propose

that the universe undergoes a big crunch singularity to be resolved by stringy physics.

This seems plausible in light of the mildness of the singularity. In the context of colliding

branes in heterotic M-theory [11, 12], for instance, the singularity corresponds to the fifth

dimension shrinking to zero size, with the large three spatial dimensions remaining finite.

Despite intense activity in recent years [13], however, a definitive example of a cosmological

bounce in string theory is still missing.

Second, the fate of perturbations through the bounce, and therefore the prediction of

scale invariance, is ambiguous. This stems from the fact that the scale-invariant growing

mode of the scalar field fluctuations precisely projects out of ζ [3, 14] — the curvature

perturbation on uniform-density hypersurfaces [15]. The latter is a useful variable to track

since it is conserved on super-horizon scales. For this reason, many have argued that

the outcome of the bounce would amount to matching ζ continuously, resulting in an

unacceptably blue spectral tilt [16]. While this is universally true for any non-singular

bounce within 4d Einstein gravity, it is nevertheless conceivable that stringy or higher-

dimensional effects relevant near the bounce may lead to mode-mixing and impart ζ with

a scale-invariant piece [17].

In a recent paper [18], we proposed a fully consistent and complete scenario which

addresses both issues. While sharing many important ingredients of the old ekpyrotic sce-

nario [1, 3, 19], this model of New Ekpyrotic Cosmology generates a non-singular bounce, all

describable within a 4d effective field theory, and unambiguously leads to a scale-invariant

curvature perturbation.

The physics of the bounce exploits the mechanism of ghost condensation [20], which

relies on higher-derivative corrections to the kinetic term for a scalar field, akin to k-

inflation [21] or k-essence [22]. Ghost condensation allows for violations of the null-energy

condition (NEC) without introducing ghosts or other pathologies [23]. In [18] we showed

explicitly how the ghost condensate can be merged consistently with the preceding ekpyrotic
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phase to generate a smooth transition from contraction to expansion. Whether ghost

condensation can be realized in a UV complete theory, such as string theory, remains an

open issue [24], although see [25] for a recent attempt. Even if a smooth bounce is realized

by very different physics, many of our key results will still apply. For our purposes the

ghost condensate provides an explicit and tractable realization of such a bounce.

In our model ζ acquires a scale-invariant spectrum well-before the bounce through

the conversion of entropy (or isocurvature) perturbations. By having two scalar fields,

each with their own ekpyrotic potentials, the entropy perturbation — corresponding to the

difference in the scalar field fluctuations — is scale-invariant [18, 26 – 28]. See also [29 –

31]. In [18], we showed how the entropy mode gets converted into the adiabatic mode by

using features in the potential which are independently necessary for ending the ekpyrotic

phase and bridging into the bounce. Then, since the physics of the bounce is all within

4d effective theory, ζ goes through the bounce unscathed and emerges in the hot big bang

phase with a nearly scale-invariant spectrum.

As pointed out in [18, 26] and studied extensively in [32, 33], the model has a tachyonic

instability along the entropy direction. Since this instability is at the origin of the growth

of entropy modes, the tachyon is unavoidable [34]. As it stands, New Ekpyrotic Cosmology

would ostensibly require fine-tuned initial conditions in order for the field trajectory to start

out rolling along this tachyonic ridge. In this paper, we show how such initial conditions

can be achieved naturally with a pre-ekpyrotic stabilization phase.

Our original scenario [18] was cast in terms of two scalar fields, φ1 and φ2, each

with their own steep, negative exponential potential. Through a rotation in field space,

following [32] we can instead study the dynamics in terms of new field variables φ and

χ, respectively the field directions along and orthogonal to the field trajectory. This is

reviewed in section 2. In this language, the solution describes rolling down an ekpyrotic

potential along φ, while χ remains fixed at a tachyonic point, thereby making the instability

manifest.

The (φ, χ) perspective leads us to propose a significant simplification and generalization

of the scenario, described in section 3. By treating φ and χ as fundamental fields, the

origin of the potential in terms of the two steep and quasi-exponential potentials becomes

unnecessary. All we need is a single steep and nearly exponential potential along φ, as well

as a tachyonic mass for χ, leaving tremendous freedom in specifying the global shape of the

potential. The only constraint which is crucial in generating a scale-invariant spectrum is

that the curvature of the potential along the χ and φ directions must be nearly the same:

V,φφ ≈ V,χχ.

This novel framework greatly expands the class of allowed ekpyrotic potential — see

figure 1 for a generic example. In section 3.2 we derive the spectral tilt for the most general

New Ekpyrotic potential and find that it depends on three parameters: the usual fast-

roll parameters ǫ and η characterizing respectively the steepness and deviation from pure

exponential form of the potential, as well as a new parameter δ describing the difference in

curvature between the χ and φ directions. The class of potentials studied in [18] corresponds

to δ = 0. Here we see that turning on δ allows for even greater freedom in the spectral

tilt. In particular, pure exponential potentials (η = 0) were found to give a blue spectrum
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Figure 1: General shape of the potential during the ekpyrotic phase. The arrow indicates the

desired solution, corresponding to rolling down a steep, negative and quasi-exponential potential

along φ, while remaining perched on top of a tachyonic ridge along χ.

in [18, 26, 27], in disagreement with the recent WMAP data [35]. This led [18, 26] to

consider deviations from the pure exponential form (η 6= 0), which does allow for a small

red tilt. Here, however, we see that even for pure exponentials the tilt can be red by having

non-vanishing δ.

In section 3.3, we discuss the generic form of higher-order terms in χ. These self-

interaction terms play a crucial role in determining the level of non-Gaussianity of the per-

turbation spectrum. We find that the non-Gaussian signal generated during the ekpyrotic

phase is generically substantial, within the reach of current and near-future experiments.

The tachyonic instability in the χ direction is part of a more general discussion of

initial conditions in New Ekpyrotic Cosmology, in particular the assumed degree of initial

flatness and homogeneity. In the context of the original ekpyrotic scenario [1] it was initially

believed that the model did not address the homogeneity and flatness problems of standard

big bang cosmology [36]. See [37] for a recent critique of the scenario along these lines.
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Such criticism motivated the advent of the cyclic model [9, 10], where homogeneity and

flatness in a given cycle is achieved through a phase of dark energy domination in the

previous cycle. It was recently realized, however, that the ekpyrotic model does in fact

solve these problems [38], in a way akin to inflationary cosmology.

In section 4, we argue that New Ekpyrotic Cosmology addresses the flatness, homo-

geneity and isotropy problems of standard big bang cosmology without invoking any phase

of cosmic acceleration. This relies crucially on the ekpyrotic attractor mechanism — during

the ekpyrotic phase, the energy density in the ekpyrotic scalar field blueshifts much faster

than any other component, in particular spatial curvature and anisotropic stress. In other

words, contrary to the naive expectation that a contracting phase makes the universe more

inhomogeneous, here the universe becomes increasingly smooth. Therefore, making the

natural assumptions that the proto-ekpyrotic patch is fairly homogeneous, isotropic, and

has curvature comparable to the Hubble scale, then, provided the ekpyrotic phase lasts

for sufficient number of e-folds, the universe emerges in the hot big bang phase with the

high level of symmetry we observe today. As such, New Ekpyrotic Cosmology resolves the

standard problems of the big bang model.

This is precisely analogous to inflationary cosmology. There one assumes that over

some macroscopic patch the universe is sufficiently homogeneous and flat to allow inflation

to take over. Subsequently, cosmic acceleration flattens and homogeneizes the universe

to the high level we observe it today. Of course, in absolute terms the assumed initial

radius of curvature is much larger in ekpyrosis than in inflation, but by no means is this

a drawback of one model versus the other. Instead, this corresponds to drastically dif-

ferent assumptions about the initial state of the universe: inflation assumes a hot initial

state, with correspondingly high Hubble scale; ekpyrosis proposes a cold beginning, with

correspondingly small expansion rate. In the absence of a concrete and rigorous theory of

initial conditions, either starting point is equally reasonable. With respect to flatness and

homogeneity, the proper yardstick is, therefore, the assumed level of flatness and homo-

geneity compared to the respective initial Hubble radius. And, from this point of view,

both models are equally successful.

In this paper, we address in a simple and natural way the fine-tuning of initial condi-

tions associated with the aforementioned tachyonic instability of the two-field model. In

section 5 we quantify the nature of the instability and discover that exponentially fine-

tuned conditions must be satisfied at the onset of the ekpyrotic phase in order for the roll

along the tachyonic ridge to last sufficiently long to produce enough e-foldings of scale-

invariant perturbations. We then solve this initial fine-tuning by introducing a positive

mass squared term for χ, which is relevant and stabilizes χ at early, pre-ekpyrotic times,

but becomes negligible during the ekpyrotic phase. In other words, this term serves to

set up the desired initial conditions but does not jeopardize the subsequent generation of

perturbations. Thus, χ starts oscillating around its stable minimum. By introducing cou-

plings to light fermions, the energy in these oscillations is quickly converted into thermal

radiation. We find that for a wide range of initial conditions, spanning many orders of

magnitude in initial χ energy density, χ is exponentially close to the top of the tachyonic

ridge by the onset of the ekpyrotic phase. The modified potential is sketched in figure 2.
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Figure 2: A pre-ekpyrotic mechanism sets up the desired initial conditions for the ekpyrotic phase.

With the addition of a positive mass-squared term, the field is initially stable in the χ direction.

By introducing couplings to light fermions, the field settles down to the minimum for a wide range

of initial conditions by the onset of the ekpyrotic phase.

In section 6, we turn to a discussion of the exit from the ekpyrotic phase, the subsequent

NEC-violating phase and the resulting non-singular bounce. In this part of the story as well,

the (φ, χ) picture leads to tremendous simplications compared to our original model [18].

To bring the ekpyrotic phase to an end, we include corrections terms which eventually drive

χ away from the tachyonic ridge and towards a stable minimum, as shown in figure 3. This

is necessary to generate a turn in the field trajectory, thereby imprinting the scale-invariant

entropy perturbation spectrum onto ζ.

Thus χ rolls to the minimum and starts oscillating around it. Its mass around the

minimum is generically large compared to Hubble, and therefore the energy density in χ

blueshifts as a dust component. Note that the oscillations are not damped by the light

fermions of the pre-ekpyrotic phase since, as χ rolls away from the tachyonic ridge, these

fermions become heavy and can be henceforth ignored. Nevertheless the energy density

in χ quickly becomes subdominant as φ keeps on rolling, due to the ekpyrotic attractor

mechanism. The dynamics therefore effectively reduce to single-field ekpyrotic motion

along φ.

The rest of the story consists of φ entering a ghost condensate phase which leads to

a violation of the NEC and results in a non-singular cosmological bounce. As described

in [18], this requires the post-ekpyrotic potential to become positive and flat. Thus, shortly

after χ rolls off, we envision φ reaching a minimum of the potential followed by a steep
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Figure 3: The end of the ekpyrotic phase is triggered by a term in the potential which is small

at early times but eventually pushes the field away from the tachyonic ridge. The field rolls down

to a minimum in the χ direction and starts oscillating around it. Meanwhile the field keeps rolling

along the φ direction.

rise to positive values where the potential becomes flat. (Note that although the potential

is flat and positive, there is no sustained inflationary phase here. From the onset of the

ghost condensate phase until reheating, the scale factor changes only by a factor of order

unity.) Climbing up to this plateau greatly reduces the kinetic energy in φ, which allows

φ to enter a ghost condensate phase. While most of this bounce story parallels that of our

original scenario [18], a key difference here is that we only need one ghost condensate field,

as opposed to two. This is another considerable simplification brought about by the φ, χ

framework.

The successful merger of ekpyrosis and ghost condensation leads to a number of con-

sistency conditions which we derive explicitly in section 6.2 and summarize in section 6.3.

For example, the energy density in the χ oscillations must be small enough to allow the

ghost condensate to dominate the dynamics and lead to a bounce. None of these conditions

are very constraining, however, and we illustrate how they can be satisfied for a wide range

of parameters by studying a specific potential in section 7.

In the Conclusion in section 8, we step back and assess the current status of New
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Figure 4: Sequence of events in New Ekpyrotic Cosmology.

Ekpyrotic Cosmology compared with the inflationary model, both at the theoretical and

phenomenological levels.

The sequence of events in New Ekpyrotic Cosmology is outlined in figure 4. Starting

from a cold initial state at some initial time ti, the field χ begins oscillating around the

stable minimum and decays into radiation — see figure 2. Since radiation blueshifts more

slowly than the energy density in φ, eventually the latter takes over and dominates the

energy. Meanwhile, the χ direction becomes tachyonic, allowing for the growth of entropy

perturbations. This marks the onset of the ekpyrotic phase, denoted by tek−beg. During

this phase, the universe contracts very slowly, so that a(t) is nearly constant, whereas the

Hubble radius H−1 shrinks by an exponential amount. It is also during this phase that

fluctuations in χ are amplified and acquire a scale-invariant spectrum. The ekpyrotic phase

comes to an end at tek−end, when χ is pushed away from the tachyonic ridge and starts

oscillating around a new minimum — see figure 3. Shortly thereafter (t = tc), φ reaches

a minimum in the potential, climbs up on the flat positive plateau, and enters the ghost

condensate phase. This violates the NEC and leads to a non-singular bounce. Not long

after the universe starts expanding, the energy density in φ is converted into matter and

radiation, which reheats the universe and marks the beginning of the hot big bang phase

(t = treheat). The rest of the story until today (t = t0) is standard: the universe successively

undergoes epochs of radiation, matter and dark energy domination.

2. Two-field ekpyrosis

The ekpyrotic mechanism for generating a pre-big bang, scale-invariant spectrum for ζ,

as described in [18], relies on two scalar fields, φ1 and φ2, each rolling down a steep,

negative and nearly exponential potential. For concreteness, let us assume for now that

the potentials are pure exponentials, in general with different powers p1 ≪ 1 and p2 ≪ 1:

V (φ1, φ2) = −V1 exp

(

−
√

2

p1

φ1

MPl

)

− V2 exp

(

−
√

2

p2

φ2

MPl

)

. (2.1)

In this paper, MPl is chosen to be the “reduced” Planck mass where MPl = 2.4×1018 GeV.

Potentials that deviate from the pure exponential form were discussed in [18, 26]. In this

section, the two scalars can be taken to have canonical kinetic terms; all higher-derivative
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self-interactions, necessary to generate a ghost condensate and produce a smooth bounce,

are assumed to be negligible during this ekpyrotic phase. Under these assumptions, φ1 and

φ2 satisfy the standard scalar equations of motion

φ̈1 + 3Hφ̇1 = −V,φ1
;

φ̈2 + 3Hφ̇2 = −V,φ2
. (2.2)

These equations, combined with the Friedmann equation, allow for a scaling solution:

a(t) ∼ (−t)p1+p2 ; H =
p1 + p2

t
;

φ1(t) =
√

2p1MPl log

(

−
√

V1

M2
Plp1(1 − 3(p1 + p2))

t

)

;

φ2(t) =
√

2p2MPl log

(

−
√

V2

M2
Plp2(1 − 3(p1 + p2))

t

)

, (2.3)

where t is chosen to be negative and increasing as t → 0. For p1, p2 ≪ 1, (2.3) describes a

slowly-contracting universe driven by a highly stiff fluid with equation of state

w =
2

3(p1 + p2)
− 1 ≫ 1 . (2.4)

This cosmology is the essential feature of ekpyrotic dynamics and is the origin of the

generation of a scale-invariant spectrum in this context.

Ekpyrotic dynamics was first studied for a single scalar field, in which case the scaling

solution has the property of being an attractor. Indeed, since w ≫ 1 for the background,

the corresponding energy density blueshifts much faster than all other relevant components

— curvature, matter, radiation, coherent kinetic energy and anisotropic stress. This is the

precise analogue in a contracting universe of why accelerated expansion is an attractor in

an expanding universe. In the latter context, the nearly constant potential energy of a

slowly-rolling scalar field comes to dominate because it redshifts slower than any of the

above components.

2.1 Tachyonic instability

In the two-field case, however, the scaling solution (2.3) is not an attractor because of

a tachyonic instability in the direction orthogonal to the field trajectory — the so-called

entropy direction. This was first pointed out in [18, 26] and studied extensively in [32,

33]. This instability is essential to the generation of a scale-invariant spectrum of entropy

perturbations and, hence, cannot be removed [18, 34]. However, as we show later in this

paper, it is easy to include further terms in the potential which are negligible during the

ekpyrotic phase, but which at early times bring the field trajectory exponentially close to

the desired one.

The tachyonic instability is most easily seen in terms of two new field variables, φ and

χ, given by

φ =

√
p1φ1 +

√
p2φ2√

p1 + p2
; χ =

√
p2φ1 −

√
p1φ2√

p1 + p2
, (2.5)
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The scaling solution above implies that χ remains constant on the background trajectory.

Denoting this constant by χt, we find that

χt ≡ MPl

√

p1p2

2(p1 + p2)
log

(

p2

p1

V1

V2

)

. (2.6)

At χt the potential is tachyonic in the χ direction. To see this, note that the potential (2.1)

can be rewritten in terms of φ and χ as [32, 33]

V (φ, χ) = −V0e
−

q

2
p

φ/MPl

(

p1

p
e
−

q

p2
p1

q

2
p
(χ−χt)/MPl

+
p2

p
e

q

p1
p2

q

2
p
(χ−χt)/MPl

)

, (2.7)

where p ≡ p1+p2 and V0 ≡ (1+p2/p1)V1 exp
(

−
√

p2/p1p χt/MPl

)

. Taylor-expanding (2.7)

as a power series in χ − χt, we find to quadratic order that

V (φ, χ) = −V0e
−

q

2
p

φ/MPl

(

1 +
1

pM2
Pl

(χ − χt)
2 + . . .

)

, (2.8)

thereby revealing a tachyonic mass squared in the χ direction. This tachyonic ridge is

sketched in figure 1. Note that (2.8) satisfies

V,χχ = V,φφ (2.9)

at χ = χt, an essential feature in generating a scale-invariant spectrum for δχ, as we review

below.

In terms of φ and χ, the scalar equations of motion (2.2) take the form

φ̈ + 3Hφ̇ = −V,φ ;

χ̈ + 3Hχ̇ = −V,χ , (2.10)

while the background solution (2.3) becomes

a(t) ∼ (−t)p ; H =
p

t
;

φ(t) =
√

2pMPl log

(

−
√

V0

M2
Plp(1 − 3p)

t

)

;

χ = χt . (2.11)

This describes the system rolling along the φ direction on the top of the tachyonic ridge in

χ with the effective scalar potential for φ given by

Veff(φ) = −V0 exp

(

−
√

2

p

φ

MPl

)

. (2.12)

Note, using (2.8), (2.11) and (2.12), that

V,φφ|χ=χt
= Veff,φφ ≈ − 2

t2
(2.13)
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for p ≪ 1. As φ rolls down this steep, negative exponential potential, the tachyonic mass

for χ gets larger in magnitude. A useful relation between the latter and other background

quantities is

m2
tachyon ≡ −V,χχ|χ=χt

≈ 2
H2

p2
, (2.14)

where we have used (2.9), (2.11) and (2.13). Since p ≪ 1, the rate of instability is always

much greater than the Hubble parameter.

2.2 Instability and scale-invariant entropy perturbation

Since the field trajectory is orthogonal to χ, the fluctuations in the latter by definition

coincide during the ekpyrotic phase with the entropy perturbations. Moreover the tachyonic

mass uncovered above is essential in amplifying these perturbations, as we now review.

This implies that the instability cannot be cured without spoiling the scale invariance of

the entropy perturbation spectrum.

The evolution of the Fourier modes of δχ is governed by [18]

¨δχk + 3H ˙δχk +

(

k2

a2
+ V,χχ

)

δχk = 0 . (2.15)

In section 3.2 we will solve (2.15) and derive a general expression for the spectral tilt,

including Hubble damping and corrections from the potential. For the moment, we note

from (2.14) that
H

√

|V,χχ|
≈ p√

2
(2.16)

at χ = χt. Thus, since p ≪ 1, we can neglect the Hubble damping term in (2.15) and treat

space as flat — we can set a = 1 without loss of generality. In this approximation, χ is a

free scalar with time-dependent mass:

¨δχk +

(

k2 − 2

t2

)

δχk = 0 , (2.17)

where we have used (2.9) and (2.13) to replace V,χχ by −2/t2.

Well within the horizon, a given k-mode starts out in the usual Bunch-Davies vacuum:

δχk = e−ikt/
√

2k. The solution to (2.17) with these initial conditions is

δχk =
e−ikt

√
2k

(

1 − i

kt

)

. (2.18)

On super-Hubble scales, k(−t) ≪ 1, up to an irrelevant phase factor this reduces to

k3/2δχk =
1√

2(−t)
, (2.19)

corresponding to a Harrison-Zeldovich spectrum. It follows that, as stated above, the

scale invariance of the entropy spectrum in two-field ekpyrosis relies on the existence of a

tachyonic instability along one field direction, denoted by χ above.

– 11 –
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3. Generalized ekpyrotic potentials

From the above analysis we learn two important lessons about the ekpyrotic phase: first, the

physics associated with two exponential potentials for φ1 and φ2 is most transparent when

the theory is rewritten in terms of the rotated fields φ and χ; second, that a nearly scale-

invariant spectrum arises in the fluctuations of χ as a result of the relations V,φφ ≈ −2/t2

and V,φφ = V,χχ at χ = χt in potential (2.8). From the first fact we conclude that it is far

simpler to treat φ and χ as the fundamental fields in the theory, which we do henceforth.

It follows from the second fact that we are free to modify the potential in the ekpyrotic

phase as long as the relations

V,φφ ≈ −2/t2 , V,φφ ≈ V,χχ (3.1)

at χ = χt continue to hold. This new perspective greatly simplifies New Ekpyrotic Cos-

mology and broadens the class of allowed potentials.

3.1 Generalized potentials

The simplest such modification is the following. Motivated by (2.8), consider any potential

of the form

V (φ, χ) = −V0e
−

q

2
p

φ/MPl

(

1 +
1

pM2
Pl

(χ − χt)
2 + F (φ, χ − χt)

)

, (3.2)

where χt is any constant. Meanwhile, the function F satisfies

F,χχ|χ=χt
= 0 (3.3)

but is otherwise arbitrary. Since the exponential in φ and the quadratic term in the Taylor

expansion in χ−χt are identical to those in (2.8), this modified potential clearly continues

to satisfy conditions (3.1). Note that in the case of two exact exponentials discussed above,

keeping higher order terms in the expansion (2.8) gives

F (φ, χ − χt) =

√
2(p1 − p2)

3p3/2√p1p2M
3
Pl

(χ − χt)
3 +

p3
1 + p3

2

6p1p2p3M4
Pl

(χ − χt)
4 + . . . , (3.4)

which manifestly satisfies (3.3). Hence, (2.8) is indeed of the form (3.3). Since the gen-

eralized functions F encode the self-interactions for χ, they play an important role in the

analysis of non-Gaussianity in New Ekpyrotic Cosmology, which we discuss below.

The (φ, χ) perspective suggests an even broader class of allowed ekpyrotic potentials.

Note that although the exponential in φ and the quadratic term in the Taylor expansion

in χ − χt imply that the potential (3.2) satisfies conditions (3.1), they are hardly the only

functions to do so. For simplicity of notation, let us henceforth set

χt = 0 (3.5)

without loss of generality. Then, consider any potential of the form

V (φ, χ) = V(φ)

(

1 +
1

2

V,φφ

V f(φ)χ2 + F (φ, χ)

)

, (3.6)
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where V(φ) satisfies the standard fast-roll conditions of single-field ekpyrosis

ǫ ≡ M−2
Pl

( V
V,φ

)2

≪ 1

η ≡ 1 − VV,φφ

V2
,φ

; |η| ≪ 1 , (3.7)

which require the potential V(φ) to be steep and nearly exponential, respectively. Mean-

while, the function f(φ) has the property

f(φ) ≈ 1 (3.8)

over the relevant range of modes, and F is constrained by condition (3.3). It is straightfor-

ward to show that potential (3.6) satisfies the conditions (3.1) for a nearly scale-invariant

spectrum and is the most general potential to do so. Clearly the potential in (3.2) — with

χt set to zero — is of this form, with V(φ) = −V0e
−
√

2/p φ/MPl and f(φ) ≡ 1.

One might object that, at first sight, the (φ, χ) perspective requires an unnatural

fine-tuning — f(φ) ≈ 1 — while this is seemingly automatically satisfied in the original

φ1, φ2 language. This would seem to suggest that the latter is a more convenient set of

fundamental fields to study. On the contrary, we argue that the original picture in terms

of φ1 and φ2 requires much more fine-tuning. The generalized potential V (φ, χ) in (3.6)

requires one function to be nearly exponential and one function in the Taylor expansion

— f(φ) — to be nearly unity. However, the shape of the potential away from χ = 0, given

by the general function F , can be quite arbitrary. In contrast, in the φ1 and φ2 framework

a second function must be of nearly exponential form, corresponding to tuning infinitely

many coefficients in a Taylor expansion.

The generalized function V(φ) and the modified quadratic term in the Taylor expansion

in χ have a profound impact on the form of the spectral index of the theory. This will now

be discussed in detail.

3.2 Spectral index for general potentials

In this section we derive the spectral tilt for the general potential (3.6). A necessary

condition for scale invariance, as we will see, is that the function f(φ) be approximately

unity over the relevant range of modes, which ensures that V,χχ ≈ V,φφ near χ = χt = 0.

Therefore, let us parametrize f as

f(φ) = 1 + 3δ ; |δ| ≪ 1 , (3.9)

where the factor of 3 is introduced for convenience. Note that, generically, δ can be a

function of φ. For comparison, the analysis of section 4 in [18] focused on the special case

of identical potentials for φ1 and φ2, which translates in the φ, χ variables to f(φ) = 1.

Turning on a non-zero δ is not only more general but, as we will see, allows for greater

freedom in the spectral tilt.

The perturbation equation for the entropy field δχ is given in (2.15) by

¨δχk + 3H ˙δχk +

(

k2

a2
+ V,χχ

)

δχk = 0 . (3.10)
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When δ = 0, we find from (3.6) that V,χχ = V,φφ at χ = 0, in which case the calculation is

identical to that presented in [18, 26]. When δ 6= 0, however, V,χχ = V,φφ(1 + 3δ) at χ = 0

and thus

¨δχk + 3H ˙δχk +

(

k2

a2
+ V,φφ(1 + 3δ)

)

δχk = 0. (3.11)

To calculate ns, we follow the approach developed in [18]. Define the equation of state

parameter

ǭ ≡ 3

2
(1 + w) = − Ḣ

H2
= −d ln H

dN
, (3.12)

where N = ln a is a dimensionless time variable. Equation (3.11) can now be recast entirely

in terms of ǭ and its derivatives with respect to N , as shown in [18] for the δ = 0 case.

Since the calculation closely parallels that of [18], for the sake of brievity we only outline

the key steps and refer the reader to [18] for details.

In the ekpyrotic phase, the equation of state parameter is large: ǭ ≫ 1. Moreover, for

simplicity, we assume that it is slowly-varying in time. In this limit, the ǫ and η fast-roll

parameters can be written as

ǫ =
1

2ǭ
; η =

1

4ǭ2

dǭ

dN
. (3.13)

Terms involving higher-derivatives on ǭ, such as (dǭ/dN)2 and d2ǭ/dN2, are found to

be higher-order in ǫ and η and, therefore, can be consistently neglected in the fast-roll

approximation. To illustrate how this substitution works, we note, for example, that V,φφ

in (3.11) can be rewritten as

V,φφ

H2
= ǭ2

(

−2 +
6

ǭ
+

5

2

1

ǭ2

dǭ

dN
+ . . .

)

= ǭ2(−2 + 12ǫ + 10η + . . . ) , (3.14)

where the ellipses stand for terms of order ǫ2, η2, ǫη and so on. Let us emphasize that ǫ

and η can therefore be treated as essentially constant in this approximation, as in slow-roll

inflation. Their time-dependence generate order ǫ2, η2, ǫη corrections, which are negligible.

The next step consists of introducing a new time variable

x =
1

ǭ − 1

(

k

aH

)

(3.15)

and rescaling δχk as

vk = a δχk . (3.16)

After some algebra, the perturbation equation (3.11) can be cast in the form

x2 d2vk

dx2
+

x2

1 − 8η
vk − 2 (1 − 3(ǫ − η − δ)) vk = 0 , (3.17)

where we have dropped higher-order terms in the fast-roll parameters.

Thus far, ǫ and η are approximated as constant whereas δ is up to this point an

arbitrary function of φ, and thus an arbitrary function of time. In order for the spectrum

to be nearly scale-invariant, however, clearly δ cannot vary rapidly while the observable
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modes exit the horizon. A small time-dependence is allowed, of course, which would lead

to a running spectral index. We leave this interesting possibility aside and henceforth focus

on the simplest case where δ is approximately constant over the relevant spectral range.

In terms of y ≡ x/
√

1 − 8η, the solution with Bunch-Davies vacuum is given as usual

by a Hankel function:

vk =
1√
2k

√

π

2

√
yH(1)

n (y) , (3.18)

with n ≡ (3/2)
√

1 − 8(ǫ − η − δ)/3 ≈ 3/2 − 2(ǫ − η − δ). Note that in the limit of flat

space (a → 1) and exact scale-invariance (n → 3/2), this reduces to (2.18).

On large scales, k ≪ aH, the amplitude tends to vk ∼ k−n, corresponding to a spectral

index:

ns − 1 = 4(ǫ − η − δ) . (3.19)

As a check, for δ = 0 this reduces to the result of [18]. Thus, δ acts effectively as a

correction to the fast-roll parameters contributing to the spectral tilt.

As discussed in [18, 26, 27], pure exponential potentials — η = δ = 0 in our language

— yield a blue spectrum. However, as shown in [18, 26] for the case δ = 0, it is easy

to get a red tilt by considering potentials that deviate from the pure exponential form,

corresponding to non-zero η. For example, V (φ) ∼ exp(−φn), with n > 2, gives a red tilt

at large φ. What we have found here is that the more generic case with δ 6= 0 allows greater

freedom in getting a red tilt. Even if ǫ − η is positive, for instance, which by itself would

yield a blue spectral index, it is still possible to get a red tilt if δ is positive and dominant.

3.3 Non-gaussianity in general potentials

Having derived the spectral index for the generalized potential (3.6), we now turn to the

question of non-Gaussianity of the fluctuations. Whereas the spectral index is determined

by the φ dependent over-all factor V(φ) and the form of the quadratic term in the Taylor

expansion in χ, the level of non-Gaussianity is associated with the function F , which

encodes all self-interaction terms for χ. Here we provide an estimate of the non-Gaussianity

level based on the generic size of these interaction terms. For simplicity, we shall ignore

the effects of gravity, as we did in section 2.2 to estimate the δχ 2-point function, and work

to leading order in the fast-roll parameters ǫ and η.

While it is clear from the above discussion that F is completely arbitrary, nevertheless

we can give some naturalness arguments for the cubic and higher-interaction terms in χ

based on the form of the mass term. To leading order in ǫ, η, it follows from (3.7) that

V,φφ

V ≈ ǫ−1 . (3.20)

Thus the quadratic term in (3.6) can be written as

1

2
V(φ(t))

χ2

Λ2
, (3.21)

where Λ is an effective cut-off scale:

Λ ≡ MPl

√
ǫ . (3.22)
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From this point of view, we expect higher-order interactions to be suppressed by the

same scale, leading to a generic F of the form

F (φ, χ) =
α(φ(t))

3

χ3

Λ3
+ O

(

χ4
)

. (3.23)

Here the coefficient α is a priori an arbitrary function of φ. However, to simplify the

analysis we shall take it to be a constant which, naturally, is expected to be of order unity.

The three-point function for the fluctuations δχ is determined by the interaction Hamil-

tonian [39], which we can read off from the cubic part of the potential:

Hint = V(φ(t))
α

3

δχ3

Λ3
≈ − α

3Λt2
δχ3 . (3.24)

Note that in the last step we have substituted (3.20) and used V,φφ ≈ −2/t2. Since

Hint is exactly of the form studied in [27], we can immediately apply their results to our

calculation. We find that the 3-point function for the curvature perturbation ζ at the end

of the ekpyrotic phase (t = tek−end), inherited from δχ, is given by

〈ζ~k1
(tek−end)ζ~k2

(tek−end)ζ~k3
(tek−end)〉 ≈ (2π)3δ

(

∑

i

~ki

)

∑

i k
3
i

∏

i k
3
i

α∆
3/2
ζ

23/2Λ(−tek−end)
, (3.25)

where ki denotes the magnitude of ~ki, and all modes are assumed to be super-Hubble:

ki(−tek−end) ≪ 1. Moreover, ∆ζ is the amplitude of the power spectrum, ∆ζ = k3ζ2
k ,

which is fixed by WMAP:

∆
1/2
ζ ≈ 10−5 . (3.26)

Note that the shape of the 3-point function is of the local form [40].

The level of non-Gaussianity is usually expressed in terms of the fNL parameter [41, 42],

defined in terms of ζ by

ζ(x) = ζg(x) +
3

5
fNLζ2

g (x) , (3.27)

where ζg has a Gaussian spectrum. From (3.25) we immediately read off that

fNL = ∓5
√

2

18
∆

−1/2
ζ

α

Λ(−tek−end)
≈ ∓ 5

18
∆

−1/2
ζ

α

ǫ
· |Hek−end|√

2ǫMPl

, (3.28)

where we have substituted (3.22) and (2.11), taking into account that p ≈ 2ǫ in our

approximation. Note that the above sign ambiguity has to do with the details of how the

entropy perturbation is converted onto ζ [27], an issue we ignore for the present discussion.

The last factor in (3.28) can be expressed in terms of the amplitude of density pertur-

bations as [18]

∆
1/2
ζ = β

Hreheat√
2ǫMPl

, (3.29)

where β is a model-dependent prefactor having to do with the details of the exit from the

ekpyrotic phase. As we will see in section 6, in the approximation that the ekpyrotic phase

ends through a sharp turn in the field trajectory, then we have β = ∆θ, where ∆θ is the

– 16 –



J
H
E
P
1
1
(
2
0
0
7
)
0
7
6

change in angle in the trajectory in field space — see also (5.5) of [18]. Thus β is at most

of order unity in that case.

Save for the β coefficient, this expression is identical to its counterpart in inflation,

with ǫ replacing the ǫinf slow-roll parameter. Now, as indicated in figure 4 and as we

will discuss later in detail, the magnitude of the Hubble parameter at the end of the

ekpyrotic phase is roughly the same as at reheating: |Hek−end| ∼ Hreheat. Using this fact

and substituting (3.29) into (3.28), we find

fNL ≈ ∓ 5

18

α

β
ǫ−1 . (3.30)

At the 2σ level, the recent WMAP data constrains fNL to be within the range [35, 43]:

−36 < fNL < 100. Using the liberal end of this bound, we get

ǫ ∼> 2 · 10−3 α

β
. (3.31)

Since ǫ ≪ 1, the level of non-Gaussianity tends naturally to be large in New Ekpyrotic

Cosmology. For example, we will see in section 4.4 that p ∼ 10−2 for Treheat = 1015 GeV,

corresponding to ǫ ≈ 5 · 10−3. Furthermore, as discussed in section 6, typically β ∼ O(1).

Hence, taking α ∼ O(1) yields fNL ≈ 40, which is below, but not far from, the present

upper bound. Lower reheating temperatures correspond to even smaller values of ǫ and

therefore to larger non-Gaussian signal. Of course, we are free to choose the parameter α

to be small and, hence, ekpyrotic theory can always lie within the observational bound.

The implications for current and future experiments will be discussed elsewhere.

The significant non-Gaussian signal is a distinguishing feature of New Ekpyrosis com-

pared to slow-roll inflation, as the latter is well-known to give unobservably small fNL.

Significant non-Gaussianity in inflation is achieved in multi-field models [44], in models

with higher-derivative kinetic terms [21, 45 – 47], as well as in scenarios where density

perturbations are generated by another light field, such as the curvaton [48] and modulon

scenarios [49]. The large non-Gaussianity level of New Ekpyrotic Cosmology is also in sharp

contrast with single-field ekpyrosis, where density perturbations are even more Gaussian

that in slow-roll inflation [50].

4. Flatness and homogeneity in ekpyrotic theory

The tachyonic instability in χ is required in order to generate a nearly scale-invariant fluc-

tuation spectrum during the ekpyrotic phase. Its existence, however, necessitates a careful

study of both the initial conditions of ekpyrotic cosmology, as well as the mechanism for

ending the ekpyrotic phase and generating a Harrison-Zeldovich spectrum in the curvature

perturbation. We will give a detailed analysis of both of these issues later in this paper.

Here, however, we note that initial conditions are closely related to the required degree of

flatness and homogeneity of the universe. In this section, we will show that both of these

fundamental problems are naturally solved in New Ekpyrotic Cosmology.

When the original ekpyrotic scenario was proposed, it was believed that the model

failed to address the flatness and homogeneity problems of standard big bang cosmology.
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This was viewed as a drawback for ekpyrotic theory as compared to inflation [36, 37].

This concern motivated the cyclic extension of the scenario [9, 10], where flatness and

homogeneity at the onset of each contracting phase is achieved by an epoch of dark energy

domination at the conclusion of the previous cycle. However, much progress has been made

since then and the time seems right to revisit these issues in the pure, non-cyclic ekpyrotic

context. We will argue that, contrary to initial beliefs, ekpyrotic theory is equally successful

as inflation in addressing the standard problems of big bang cosmology [38], without having

to invoke any phase of cosmic acceleration.

4.1 Contrast with inflation

Inflationary and ekpyrotic cosmology are based on starkly different assumptions about the

initial state of the universe.

In inflation, one envisions the universe as starting at the big bang in a hot, rapidly

expanding and chaotic state. While most of the universe is wildly inhomogeneous, the

assumption is that there exists a Hubble patch somewhere which is sufficiently smooth to

allow inflation to occur. A short phase of cosmic acceleration then blows up this tiny region

into a large, homogeneous, isotropic and flat universe.

Ekpyrosis, on the other hand, proposes that the universe begins in a quiescent, nearly

vacuous and cold state. In the context of the original ekpyrotic scenario, this starting

point was motivated by nearly supersymmetric or BPS initial conditions. In this scenario,

all physical scales at the onset of ekpyrosis — initial Hubble parameter, curvature of the

universe, radiation temperature — are very small in absolute, particle physics terms.

In the absence of a concrete theory of initial conditions, however, the question of

whether the universe started out in a hot or cold state belongs to the realm of meta-

physics. Thus, with our current understanding, a tiny initial Hubble parameter is no less

natural than a GUT-scale Hubble. From a cosmology perspective, the relevant yardstick

for assessing the degree of genericity of initial conditions should, therefore, not be based

on the absolute scale of any observable, such as the initial spatial curvature, but rather on

whether it is fine-tuned relative to other observables, such as the energy density in other

components. We illustrate this point by discussing the flatness and homogeneity problems

of standard big bang cosmology.

4.2 Flatness and homogeneity problems in inflation

Viewed as an additional energy component in the Friedmann equation, the curvature of

the universe contributes a fractional amount

Ωk ∼ 1

a2H2
. (4.1)

Since both a and H evolve in time, evidently so does Ωk. In particular, from the onset of

the hot big bang phase until the present time the scale factor grows by a factor of eNrad .

Now, assuming for simplicity that our universe has been radiation-dominated ever since

reheating, we have H ∼ 1/t ∼ 1/a2. It follows that over the same period the Hubble
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parameter shrinks by e−2Nrad . In other words, aH changes by e−Nrad . A useful expression

for Nrad is therefore

Nrad ≡ ln

(

areheatHreheat

a0H0

)

= ln

(

Treheat

T0

)

, (4.2)

where the last step follows from the standard redshift relation a ∼ 1/T . For instance, since

the current temperature of the universe is T0 = 2.7K ∼ 10−3 eV, then an initial temperature

of Treheat = 1015 GeV yields the standard Nrad ≈ 60, whereas a lower reheat temperature

of 108 GeV corresponds to Nrad ≈ 46. Incidentally, we immediately recognize eNrad as the

ratio between the size of our observable Hubble patch in comoving units (λ0 = H−1
0 /a0) to

that at reheating (λreheat = H−1
reheat/areheat).

Therefore, during the radiation-dominated epoch Ωk grows by an exponential factor:

Ω
(0)
k

Ω
(reheat)
k

=
a2

reheatH
2
reheat

a2
0H

2
0

= e2Nrad . (4.3)

Since we know from observations that Ωk is at most a few percent today, we are forced to

conclude that Ωk must have been exponentially small relative to all other components at

the onset of the hot big bang phase. This is the flatness problem.

Inflation addresses this fine-tuning through a short phase of cosmic acceleration. Dur-

ing this phase the scale factor grows by an exponential amount, whereas the Hubble pa-

rameter remains essentially constant. Thus we can define the total number of e-foldings of

inflationary expansion from some initial time ti until reheating treheat as

Ninf ≡ ln

(

areheatHreheat

aiHi

)

≈ ln

(

areheat

ai

)

. (4.4)

By definition eNinf measures the size of the proto-inflationary patch in comoving units

(λi = H−1
i /ai) to that at reheating.

This immediately implies that any initial curvature is exponentially suppressed by the

time of reheating:

Ω
(reheat)
k

Ω
(i)
k

=
a2

i H
2
i

a2
reheatH

2
reheat

= e−2Ninf . (4.5)

Then, as long as Ninf ∼> Nrad, we find that Ω
(0)
k ∼< Ω

(i)
k . In other words, starting from the

natural choice Ω
(i)
k ∼ O(1), a long enough inflationary phase results in a sufficiently large

radius of curvature for the observable universe. This is the essence of how inflation solves

the flatness problem. Instead of requiring an exponentially large initial radius of curva-

ture, as in standard big bang cosmology, inflation tolerates an initial curvature component

comparable to all other forms of energy density.

The homogeneity problem follows automatically from the above considerations, pro-

vided that space-time is essentially homogeneous within the proto-inflationary patch. If

Ninf ∼> Nrad, then our entire observable universe lies well-within this patch at the onset of

inflation and is therefore highly homogeneous.
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4.3 Flatness and homogeneity problems in ekpyrotic cosmology

Ekpyrotic theory solves the flatness and homogeneity problems in an analogous way, yet

using drastically different dynamics. Instead of exponentially rapid expansion with nearly

constant Hubble radius, the ekpyrotic phase consists of a slowly contracting universe with

rapidly shrinking Hubble radius. The scale factor is essentially constant during this phase,

as indicated in figure 4. Meanwhile, the Hubble radius shrinks by an overall exponential

factor eNek , with Nek defined by

Nek ≡ ln

(

aek−endHek−end

aek−begHek−beg

)

≈ ln

(

Hek−end

Hek−beg

)

. (4.6)

This definition implies that eNek is just the ratio of the comoving Hubble radius at the

onset and exit of the ekpyrotic phase. Thus by the end of the ekpyrotic phase the curvature

component is suppressed by

Ω
(ek−end)
k

Ω
(ek−beg)
k

=

(

aek−begHek−beg

aek−endHek−end

)2

= e−2Nek . (4.7)

This is followed by a bounce and an expanding hot big bang phase. In the New

Ekpyrotic scenario, this is achieved by a ghost condensation phase that violates the NEC,

generates a non-singular bounce and eventually reheats the universe. As indicated in

figure 4, however, between tek−end and treheat the scale factor changes by at most a factor

of order unity. Meanwhile, although the Hubble radius changes dramatically in the process

— H vanishes momentarily at the bounce by definition — its magnitude at the beginning

and end of the NEC-violating phase is nevertheless essentially the same, as shown with

explicit bouncing solutions [18]. Ignoring the details of this intervening phase, therefore,

we can safely assume that a and |H| both match continuously from the exit of the ekpyrotic

phase to the onset of the radiation-dominated expanding phase, so that

Ω
(ek−end)
k ∼ Ω

(reheat)
k . (4.8)

Therefore, just as in inflation, starting with Ω
(ek−beg)
k ∼ O(1) at the onset of the

ekpyrotic phase, one obtains an acceptably large radius of curvature by the present time

provided Nek ∼> Nrad. In this precise sense the ekpyrotic scenario solves the flatness prob-

lem.

The condition Nek ∼> Nrad implies that our entire observable universe is initially well

within the proto-ekpyrotic patch. Therefore, the assumption that the initial Hubble radius

is reasonably smooth guarantees a high degree of homogeneity for our observable patch.

4.4 Observational constraints on model parameters

We have seen that inflation and ekpyrosis are equally successful at addressing the well-

known problems of standard big bang cosmology. In particular, for the flatness problem,

both allow for the natural choice Ωk ∼ O(1) initially. Of course, in absolute terms the

initial radius of curvature is much larger in ekpyrosis than in inflation. As stressed earlier,
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however, this is a consequence of strikingly different assumptions about initial conditions

in the two models: inflation proposes a hot beginning, corresponding to a microscopic

proto-inflationary patch, whereas ekpyrotic theory prefers a cold and vacuous initial state,

corresponding to a macroscopically large Hubble radius.

To make this point quantitative, in this subsection we estimate the initial Hubble radius

in the ekpyrotic scenario for a range of reheating temperatures. First, using Nek ∼> Nrad,

we find from (4.6) that

|Hek−beg| ∼< e−Nrad |Hek−end| =
T0

Treheat
|Hek−end| , (4.9)

where in the last step we have substituted (4.2). As mentioned before and as shown in

figure 4, the net change in |H| from the end of the ekpyrotic phase until reheating in the

expanding phase amounts to a factor of order unity, and thus |Hek−end| ∼ Hreheat. More-

over, from the Friedmann equation in a radiation-dominated universe, we have Hreheat ∼
T 2

reheat/MPl. Substituting this into (4.9), we obtain

|Hek−beg| ∼<
T0Treheat

MPl
. (4.10)

For Treheat = 1015 GeV, this gives |Hek−beg| ∼< 10−6 eV, corresponding to an initial Hub-

ble radius on the order of 1 m. For Treheat = 108 GeV, we find |Hek−beg| ∼< 10−13 eV,

corresponding to a Hubble radius of the order of 104 km.

Note that the steepness of the V(φ) factor in (3.6) is characterized by the size of the

fast-roll parameter ǫ defined in (3.7). In the more specific potential given in (3.2), where

the V(φ) factor and the quadratic term are the same as in the two exponential case, we

find that the steepness of the exponential is controlled by the constant p = 2ǫ. Restricting

our discussion to (3.2), we note for future reference that the parameter p depends on

the reheating temperature through the WMAP constraint on the amplitude of density

perturbations— see (3.26) and (3.29). Neglecting the model-dependent prefactor β and

again using p = 2ǫ, we can solve (3.26) and (3.29) for p:

p ∼ 1010

(

Hreheat

MPl

)2

∼ 1010

(

Treheat

MPl

)4

. (4.11)

For instance, Treheat = 1015 GeV yields p ∼ 10−2. Notice that the fast-roll condition p ≪ 1

combined with the WMAP amplitude puts an upper bound on the reheat temperature

of Treheat ∼< 1015 − 1016 GeV. This is no different than in inflation since, as mentioned

earlier, (3.29) is identical to its inflationary counterpart.

5. Initial conditions and taming the instability

In this section, we return to the tachyonic instability and study the associated initial

conditions. We show that in order for the field trajectory to remain near χ ≈ χt = 0

sufficiently long to generate the appropriate range of scale-invariant perturbations, χ must

be exponentially close to the top of the potential ridge at the onset of the ekpyrotic phase.
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Were this to be an initial condition, it would imply that ekpyrotic theory requires incredible

fine-tuning to achieve a realistic cosmology.

Happily, as we will show below, this condition can easily and naturally be satisfied

without fine-tuning. This is accomplished by introducing a positive mass term for χ,

letting χ couple to light fermionic degrees of freedom and allowing for a pre-ekpyrotic

phase where this positive mass dominates. Hence, in this early phase, the system will

predominately oscillate around χ = 0. For a wide range of initial conditions, the energy in

these initial χ oscillations is efficiently transfered to the massless fermions, thereby bringing

χ exponentially close to χt = 0 by the onset of the tachyonic phase. Meanwhile, the energy

density in the radiation produced quickly becomes subdominant compared to that in φ,

thanks to the ekpyrotic attractor mechanism.

For ease of presentation, we will carry through our analysis not with the most general

potential (3.6) but, rather, with the more restricted potential (3.2). We do this only for

convenience. Our results easily extend to the general case (3.6). Recall that an essential

feature of (3.2) is that the steepness of the pure exponential potential in φ is determined

by the parameter p ≪ 1.

5.1 Constraints on initial conditions

To begin, let us carefully derive the constraints on the initial conditions associated with the

instability in χ during the ekpyrotic phase. From the perturbation analysis in section 2.2, it

is clear that the tachyonic instability is crucial in generating a Harrison-Zeldovich spectrum

for δχ. This follows from the substitution of V,χχ = −m2
tachyon ≈ −2/t2 into the fluctuation

equation (2.17). Hence, we cannot remove this instability without spoiling scale invariance.

The main constraint associated with this instability is the following: the initial value of

χ must be sufficiently close to χt = 0 so that the ekpyrotic phase driven by φ lasts long

enough to generate perturbations over the desired range of modes.

A necessary condition for this to be the case is that the energy density in χ be subdom-

inant throughout the entire ekpyrotic phase. The total energy density during this phase is

given by

ρtotal = ρφ + ρχ , (5.1)

where we have defined

ρφ =
1

2
φ̇2 + Veff(φ) , ρχ =

1

2
χ̇2 − 1

2
m2

tachyonχ2 + O(χ3) , (5.2)

with Veff(φ) and mtachyon given in (2.12) and (2.14), respectively. Hence, one must impose

the constraint

|ρχ| ∼< |ρφ| (5.3)

for all times during the ekpyrotic phase. In this case, we have

ρφ ≈ ρtotal = 3H2M2
Pl , (5.4)

where the last equality is just the Friedmann equation. Using expression (2.16) and the

fact that p ≪ 1, it follows that one can ignore the Hubble term in the χ equation of motion.
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From (2.11) and (2.14), this equation becomes

χ̈ − 2

t2
χ = 0 , (5.5)

whose growing-mode solution is

χ ∼ (−t)−1 . (5.6)

It follows that the energy density in χ is

ρχ ≈ −1

4
m2

tachyonχ2 . (5.7)

Returning to condition (5.2), we see that this constraint is strongest at tek−end marking

the end of the ekpyrotic phase. At this time, it follows from (5.3), (5.4) and (5.7) that

mtachyon(tek−end)∆χek−end ∼< |Hek−end|MPl , (5.8)

where ∆χek−end is the displacement of the field χ from the top of the ridge at the end of

the ekpyrotic phase. Using (2.14) to substitute for mtachyon, we obtain

∆χek−end ∼< p MPl . (5.9)

Let us see what this entails for the χ displacement at the onset of the ekpyrotic phase,

denoted by ∆χek−beg. Noting from the scaling solution (2.11) and (5.6) that ∆χ ∼ |H|,
we find

∆χek−beg ∼<
(

Hek−beg

Hek−end

)

p MPl = e−Nekp MPl , (5.10)

where in the last step we have substituted (4.6). In other words, χ must be exponentially

close to χt = 0 at tek−beg in order for the ekpyrotic phase to last sufficiently long.

We can also express this bound as a constraint on the initial energy density in χ at

the beginning of the ekpyrotic phase:

ρ
(ek−beg)
χ

ρ
(ek−beg)
φ

∼
m2

tachyon (tek−beg)∆χ2
ek−beg

H2
ek−begM

2
Pl

∼<
p2m2

tachyon(tek−beg)

H2
ek−end

∼
(

Hek−beg

Hek−end

)2

= e−2Nek . (5.11)

Thus the initial χ energy density has to be exponentially suppressed with respect to that

of φ at the onset of the ekpyrotic phase.

We conclude from (5.10) and (5.11) that the value of χ at tek−beg has to be exponen-

tially close to the top of the tachyonic ridge in order to generate the necessary e-foldings

of scale-invariant perturbations. As an initial condition, this introduces a fine-tuning into

ekpyrotic theory. However, as mentioned in the introduction to this section, the same result

can be obtained naturally, without fine-tuning. We now show how this can be achieved.
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5.2 Stabilization mechanism

In this subsection, we argue that the bounds (5.10) and (5.11) are naturally satisfied if

the ekpyrotic phase, during which χ is tachyonic, is preceeded by a phase in which χ has

positive mass squared and couples to light fermions. This can be achieved, for example, by

adding a mass term m2
χ(φ)χ2 to (3.2) where, in general, mχ depends on φ. The potential

then is given by

V (φ, χ) = −V0e
−

q

2
p

φ/MPl

(

1 +
1

pM2
Pl

χ2 + . . .

)

+
1

2
m2

χ(φ)χ2 . (5.12)

The new mass parameter mχ(φ) is chosen so that effective mass term for χ,

m2
eff(φ) = −m2

tachyon(φ) + m2
χ(φ) , (5.13)

is positive at early times but becomes tachyonic for sufficiently small values of φ. This

can be the case even for constant mχ, since mtachyon grows in time as φ evolves down the

exponential potential. However, this transition is facilitated by choosing mχ(φ) to be a

decreasing function of φ. The end of the pre-ekpyrotic phase and the beginning of the

ekpyrotic phase occur by definition at time tek−beg when χ becomes tachyonic:

mχ(tek−beg) ∼< mtachyon(tek−beg) ∼
|Hek−beg|

p
. (5.14)

After this time the dynamics is dominated by the ekpyrotic potential (3.2). A typical

potential of the form (5.12) is shown in figure 2.

In order to generate the desired number of e-folds of perturbations, mχ must become

subdominant at a sufficiently early time. Otherwise, the tachyonic phase will be triggered

too late in the evolution of the universe, resulting in too short a range of scale-invariant

perturbations. Assuming that the largest observable mode exits the horizon at tek−beg, a

conservative assumption, we can use (5.14) to put an upper bound on the allowed value

of mχ at tek−beg. Expressing the right-hand side of (5.14) in terms of the reheating tem-

perature by substituting for Hek−beg and p through (4.10) and (4.11) respectively, we find

that

mχ(tek−beg) ∼< 10−10 T0

MPl

(

MPl

Treheat

)3

MPl ≈ 10−40

(

MPl

Treheat

)3

MPl . (5.15)

In the last step, we have used the fact that the microwave background temperature is

T0 ≈ 2.7 K ≈ 10−30MPl. For example, Treheat = 1015 GeV gives mχ(tek−beg) ∼< 10−4 eV,

whereas for Treheat = 108 GeV the bound greatly weakens to mχ(tek−beg) ∼< 108 GeV.

Finally, for Treheat ∼< 105 GeV, we get a trivial bound of mχ(tek−beg) ∼< 0.1 MPl.

The pre-ekpyrotic phase occurs during the time interval ti ≤ t ≤ tek−beg, where ti is

some as yet unspecified initial time. By definition, during this phase χ has positive mass

squared given, for most of the epoch, by m2
eff ≈ m2

χ. Given some initial displacement

∆χi, χ will undergo oscillations around the minimum of the potential at χ = 0. Since the

universe is contracting, we cannot rely on Hubble friction to damp out these oscillations.
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On the contrary, they will instead get amplified by the usual blueshift effect. However,

if we assume that χ is coupled to light fermionic degrees of freedom, then its coherent

oscillations will decay into these particles, thereby stabilizing χ. Let Ψ be a typical light

fermion and assume that it couples to χ as χΨ̄Ψ. Then the rate of decay is given as usual

by [51]

Γ ∼ mχ . (5.16)

If Γ ≫ |H|, the decay is rapid on a Hubble time and the χ evolution is overdamped. That is,

the field settles at its minimum well before the blueshift effect can amplify the oscillations.

This is easily satisfied here if we choose mχ at tek−beg to saturate the bound (5.14) since,

in this case, we have

mχ(tek−beg) ∼
|Hek−beg|

p
≫ |Hek−beg| ∼> |Hi| , (5.17)

where Hi is the initial Hubble parameter. Since mχ is either constant or increases at earlier

times, it follows that Γ ≫ |H| at any time during the pre-ekpyrotic phase.

Let us now calculate the initial conditions at the beginning of the pre-ekpyrotic phase

that will produce the exponentially suppressed displacement (5.10) and ratio of densi-

ties (5.11) at tek−beg. As in the ekpyrotic phase, we will assume for concreteness that

|ρχ| ∼< |ρφ| , (5.18)

so that the evolution is dominated by φ during the entire pre-ekpyrotic epoch. It will soon

become obvious that our stabilization mechanism is sufficiently effective to allow for larger

initial χ component. Of course the mechanism eventually fails if ρχ is initially orders of

magnitude larger than ρφ, but these are clearly fine-tuned and unnatural initial conditions.

To simplify the calculation, we henceforth take mχ to be independent of φ. Moreover,

we assume that mχ saturates (5.17),

mχ ∼ mtachyon(tek−beg) (5.19)

so that Γ ≫ |H|. In this regime, we can ignore any blueshift effect. It follows that from

the earlier discussion that

ρφ ≈ 3H2M2
Pl , |ρχ| ≈

1

4
m2

χχ2. (5.20)

Putting these densities into (5.18) and evaluating the inequality at ti gives

mχ(ti)∆χi ∼< |Hi|MPl , (5.21)

where ∆χi is the displacement of field χ at the beginning of the pre-ekpyrotic phase.

Using (5.17) and (5.19), we find that the initial displacement must satisfy

∆χi ∼<
(

Hi

Hek−beg

)

pMPl . (5.22)

This consistency condition ensures that χ is subdominant throughout the pre-ekpyrotic

phase.
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To determine the allowed values of ∆χi, one must evaluate the ratio Hi/Hek−beg.

This is most easily done by considering the ratio of the energy densities. From the above

discussion it follows that the energy density in χ decays as ρχ ∝ e−Γt ∼ e−mχt. Thus,

starting with some energy density ρ
(i)
χ at ti, by the onset of the ekpyrotic phase this has

decayed to a value ρ
(ek−beg)
χ given by

ρ
(ek−beg)
χ

ρ
(i)
χ

≈ e−mχ(tek−beg−ti) ≈ e−mχ(−ti) ≈ e−
√

2|Hek−beg|(−ti)/p , (5.23)

where in the second step we have assumed, for simplicity, that the pre-ekpyrotic phase

is long compared to tek−beg; that is, −ti ≫ −tek−beg. Moreover we have substituted

mχ ∼ mtachyon(tek−beg) ≈
√

2|Hek−beg|/p from (2.14).

It is convenient to rewrite this in terms of the initial Hubble parameter Hi. Since

ρ
(i)
χ ∼< ρ

(i)
φ by assumption, the cosmological evolution is dominated by φ throughout the

pre-ekpyrotic phase. Therefore, we can substitute the relation Hi = p/ti given in (2.11):

ρ
(ek−beg)
χ

ρ
(i)
χ

≈ e−
√

2Hek−beg/Hi , (5.24)

and thus
ρ
(ek−beg)
χ

ρ
(ek−beg)
φ

≈ ρ
(i)
χ

ρ
(ek−beg)
φ

e−
√

2Hek−beg/Hi < e−
√

2Hek−beg/Hi . (5.25)

The last inequality follows from ρ
(ek−beg)
φ > ρ

(i)
φ (due to blueshift between ti and tek−beg)

as well as ρ
(i)
φ ∼> ρ

(i)
χ (by assumption). Comparing this against the bound given in (5.11),

we see that it is satisfied if
Hek−beg

Hi
∼>

√
2Nek . (5.26)

Putting this into (5.22), we get an expression for the displacement at the beginning of the

pre-ekpyrotic phase given by

∆χi ∼<
1√

2Nek

pMPl . (5.27)

To get a feel for what this expression entails, recall from section 4 that p and Nek

depend on the reheat temperature. For example, for Treheat = 1015 GeV, we found that

p ∼ 10−2 and Nek ∼> 60. It follows that for this reheat temperature the displacement at

the beginning of the pre-ekpyrotic phase is given by

∆χi ∼< 10−4MPl , (5.28)

representing a wide range of natural initial conditions.

It is also useful to consider the ratio of the displacement of χ at ti to the exponentially

fine-tuned value of χ required at tek−beg. Using (5.10) and (5.27), we find that

∆χi

∆χek−beg
∼ eNek

√
2Nek

. (5.29)
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Clearly our mechanism naturally removes the exponential fine-tuning problem, as claimed.

The remaining issue is to understand the physical implication of choosing the Hubble

parameters at tek−beg and ti to satisfy the ratio (5.26). Using the fact that during the

φ-dominated pre-ekpyrotic phase H = p/t, it follows from (5.26) that

ti
tek−beg

∼>
√

2Nek , (5.30)

a natural and physically reasonable assumption. For example, for the reheat temperature

Treheat = 1015 GeV this ratio becomes

ti
tek−beg

∼> 102 . (5.31)

We conclude that in order for χ to be close enough to the top of the tachyonic ridge

by the onset of the ekpyrotic phase to ensure a sufficient number of e-foldings, it suffices to

start out at ti with the large, natural value of χ given by (5.27). This will be the case as

long as the pre-ekpyrotic phase begins sufficiently before the onset of ekpyrosis, the precise

relationship being specified in (5.30).

6. Graceful exit and bouncing

Thus far, we have discussed 1) the pre-ekpyrotic phase in which χ gets stabilized near

χt = 0 and 2) the ekpyrotic phase in which the entropy perturbation acquires a nearly

scale-invariant spectrum. In this section, we turn to the final two phases required for a

realistic cosmology, that is, 3) the exit from the ekpyrotic phase and 4) the bounce from

contraction to expansion enabled by a NEC-violating ghost condensate. We begin with

a general discussion of these last two phases, in sections 6.1 and 6.2 respectively, before

turning to a specific example in section 7.

6.1 Converting entropy into curvature perturbations

The ekpyrotic phase described by the scaling solution (2.11) must eventually come to an end

if the universe is to undergo a smooth bounce and enter the hot big bang expanding phase.

Before turning to the bounce, however, we first discuss a key element of New Ekpyrotic

Cosmology which also occurs during the exit from ekpyrosis, namely the conversion of the

scale-invariant entropy spectrum into the adiabatic mode. Even before the bounce, the

exit from the ekpyrotic phase can be used to imprint the scale-invariant entropy spectrum

onto the adiabatic mode, described by ζ, the curvature perturbation on uniform-density

hypersurfaces.

In general, it is convenient to consider new field variables, σ and s, defined with respect

to the field trajectory. As shown in figure 5, the adiabatic field velocity, σ̇, is proportional

to the vector tangent to the curve, while the entropy field velocity, ṡ, is proportional to the

normal vector. In other words, their decomposition in terms of φ̇ and χ̇ is given by

σ̇ = cos θ φ̇ + sin θ χ̇

ṡ = − sin θ φ̇ + cos θ χ̇ , (6.1)
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Figure 5: Adiabatic (σ) and entropy (s) directions at a given point along the field trajectory in

(φ, χ) space.

where

tan θ =
χ̇

φ̇
. (6.2)

During the ekpyrotic phase, the background field motion is along φ, and thus θ = 0.

Evidently, it follows from (6.1) that in this phase σ and s coincide with φ and χ, respectively.

Once we exit the ekpyrotic phase, this is of course no longer true. In general, the (φ, χ)

equations of motion given by (2.10) imply the following evolution equation for the adiabatic

field

σ̈ + 3Hσ̇ = −V,σ , (6.3)

where V,σ ≡ cos θV,φ + sin θV,χ. This result will come in handy later on in the discussion.

The relation between the adiabatic and entropy fluctuations to δφ and δχ follows

immediately from (6.1):

δσ = cos θ δφ + sin θ δχ

δs = − sin θ δφ + cos θ δχ . (6.4)

Using the standard energy and momentum constraints, the entropy perturbation satis-

fies [52]

¨δsk + 3H ˙δsk +

(

k2

a2
+ V,ss + 3θ̇2

)

δsk = 4M2
Pl

θ̇

σ̇

k2

a2
Ψk , (6.5)

where Ψ is the curvature perturbation in Newtonian gauge, while V,ss = cos2 θ V,χχ +

sin2 θ V,φφ is the curvature of the potential orthogonal to the field trajectory.
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Since θ = 0 during the ekpyrotic phase, as mentioned earlier, we have δs = δχ, so that

fluctuations in χ indeed correspond to entropy perturbations. As a quick consistency check,

since θ̇ = 0 and V,ss = V,χχ, we find that (6.5) indeed reduces to (3.10). Note, however,

that the identification of δχ with the entropy perturbation only holds during the ekpyrotic

phase; that is, as long as the field trajectory is along the φ direction. We will shortly

introduce a feature in the potential that causes a sharp turn in the field trajectory at the

end of the ekpyrotic phase, thereby imprinting a scale-invariant spectrum on ζ, which is

proportional to the adiabatic fluctuation δσ. Subsequently the classical field evolution is

partially along χ, and, evidently, fluctuations in the latter are no longer identified with the

entropy perturbation.

Let us therefore turn to the conversion of the entropy fluctuation to the curvature

perturbation spectrum. The latter is sourced by the entropy perturbation as follows [52]

ζ̇k =
H

Ḣ

k2

a2
Ψk +

2H

σ̇
θ̇δsk . (6.6)

The first term proportional to k2 is seemingly negligible at long wavelengths. As pointed

out in [33], however, this is not necessarily the case during the exit from the ekpyrotic

phase. For our purposes we will neglect this term altogether for simplicity.

Clearly, to endow ζ with a scale-invariant contribution from δs, the field trajectory

must undergo some turn at the end of ekpyrosis, which we assume is sharp and therefore

rapid on a Hubble time. In [18], this was achieved by introducing a minimum followed by

a sharp rise in the respective potentials for φ1 and φ2. In the simplified φ, χ framework

studied here, this would correspond to adding new terms in the potential that depend on

specific linear combinations of φ and χ. A much simpler option suggests itself, however,

namely to introduce some term which pushes χ away from χt = 0 at the end of the ekpyrotic

phase.

To be precise, we want to modify potential (3.2) so that χt = 0 is only an approximate

solution to the equations of motion. One can, for example, add a term to the potential

which is approximately linear in χ near χ = 0 and therefore prevents the latter from being

an extremum of the potential. This linear term must be a function of φ so that it is

negligible during the ekpyrotic phase but eventually becomes important after a sufficient

number of e-foldings is achieved. At this point it tips χ away from the tachyonic ridge

marking the end of the ekpyrotic phase. This is sketched in figure 3.

To illustrate this, let us describe the ekpyrotic phase by the simple potential (5.12)

and add a correction of the form

∆V = U0e
−

q

2

p′
φ/MPl

(

1 +
1

p′M2
Pl

(χ − χ0)
2

)

. (6.7)

Clearly, this has non-vanishing slope at χ = 0. For p′ ≪ p, the exponential prefactor

makes this correction vanishingly small during the ekpyrotic phase, and therefore χt ≈ 0 is

still a valid solution then. Once φ becomes sufficiently small, however, the correction (6.7)

becomes important and pushes χ away from the χt = 0 tachyonic point. This example will

be studied in detail in section 7.
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Coming back to general considerations, we assume that the driving force is sufficiently

strong to generate a fast-roll of χ away from the tachyonic point, corresponding to a sharp

turn in the field trajectory. To make this more precise, we require that the driving term

V,χ in the equation of motion for χ — see (2.10) — is comparable to the Hubble damping

term:

|V,χ(χ = 0)| ∼> MPlH
2 . (6.8)

Equivalently, this condition amounts to requiring the slow-roll parameter ǫχ ≡ V 2
,χ/H4M2

Pl

to be comparable or greater than unity. For example, for the specific correction given

in (6.7), this condition is satisfied for sufficiently small values of φ. We henceforth denote

by φek−end the value of φ when (6.8) is fulfilled. This notation is consistent with figure 4

since the rolling of χ away from the tachyonic ridge marks the end of the ekpyrotic phase for

all practical purposes. In particular, fluctuation modes produced thereafter are no longer

scale-invariant.

In the limit of fast-roll, we can treat the turn in the field trajectory as instantaneous

on a Hubble time. This amounts to approximating θ̇ with a delta function and treating H

as constant. Hence

ζ̇k ≈ 2Hek−end

σ̇
∆θ δ(t − tek−end) δsk , (6.9)

where ∆θ is the total change in angle during the exit. Of course, smoother exit dynam-

ics could do equally well, but this rapid-exit approximation makes it possible to proceed

analytically.

As argued in [18], σ̇ is constant during the instantaneous exit from the ekpyrotic

phase. This follows by inspection of the equation of motion for σ given in (6.3). If σ̇ is not

constant during the transition, then the σ̈ term will generate a delta-function contribution.

But this cannot be compensated by any other term in the equation. The 3Hσ̇ evidently

cannot do the trick, since H is constant during the transition by assumption. Similarly, a

sudden change in field direction can at most yield a jump in V,σ, but not a delta-function

discontinuity. Thus σ̇ is continuous, and we can substitute its value at the end of the

ekpyrotic phase. Since σ̇ = φ̇ during this phase, we read off from (2.11)

σ̇ =
2
√

ǫMPl

tek−end
=

|Hek−end|√
ǫ

MPl , (6.10)

where we have used p = 2ǫ.

Similarly δs changes by at most a factor of unity during the exit, and we refer the

reader to [18] for a detailed argument. Thus we approximate δs to match continuously as

well, for simplicity, and can substitute for δs its value at the exit from the scaling solution.

Since δs = δχ up to the exit, this can be read off from (2.11) and (2.19), again using p = 2ǫ:

k3/2δsk = k3/2 |Hek−end|
23/2ǫ

. (6.11)

Substituting the above expressions for σ̇ and δs, we can integrate (6.9) and obtain

∆
1/2
ζ = k3/2ζk ≈ ∆θ

|Hek−end|√
2ǫMPl

≈ ∆θ
Hreheat√
2ǫMPl

, (6.12)
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where we have used |Hek−end| ∼ Hreheat as indicated in figure 4 and discussed earlier.

Comparison with (3.29) shows that the model-dependent factor β is identified with ∆θ

in our sharp turn approximation, thereby confirming the discussion below (3.29). It is

desirable to have ∆θ ∼ O(1), for otherwise one needs even smaller values of ǫ at fixed

reheating temperature to maintain the WMAP normalization (3.26). In the next subsection

we will discuss the conditions for which ∆θ ∼ O(1).

To summarize, the end of the ekpyrotic phase is set by a term in the potential which

pushes χ away from the χt = 0 tachyonic point. This term is assumed irrelevant during

the ekpyrotic phase, so that χ ≈ 0 is a good approximate solution, but eventually becomes

important and triggers the end of ekpyrosis. This sudden motion in χ corresponds to a

turn in the field trajectory, which in turn imprints the scale-invariant entropy perturbation

spectrum onto the curvature perturbation.

Instead of dialing the end of the ekpyrotic phase with additional terms in the poten-

tial, one could alternatively exploit the tachyonic instability in χ, as studied in [32, 33].

However, as the discussion of section 5.1 most emphatically underscores, to generate the

desired number of e-foldings in this case requires an exponential fine-tuning in the initial

χ displacement — see, for example, (5.10). If the initial displacement is larger, then the

ekpyrotic phase will be too short, resulting in an unacceptably narrow spectral range of

scale-invariant perturbations. If it is smaller, on the other hand, then the ekpyrotic phase

will last for too long. That is, by the time the entropy perturbation is converted onto ζ,

the Hubble parameter will be too large in magnitude to yield an acceptable perturbation

amplitude. In other words, the WMAP constraint on the amplitude of perturbations is

tied in this latter case to a tuning of initial conditions.

On the other hand, adding correction terms to the potential, as we do here, leads to

robust predictions for the perturbation spectrum for a broad range of initial conditions.

Moreover, we know that corrections to (5.12) are necessary for independent reasons. For

instance, the NEC-violating ghost condensation phase requires a nearly flat and positive

potential. Thus the negative, steep exponential potential of the ekpyrotic phase must

eventually have a minimum and rise to positive values. What we are advocating is that

these corrections will generically push χ away from χ = 0, thereby endowing ζ with a scale-

invariant spectrum. We will illustrate this in detail in section 7 with the correction (6.7),

showing how it leads to a scale-invariant curvature perturbation and how it can be matched

smoothly to the NEC-violating ghost condensate phase.

6.2 A bouncing scenario

In this subsection, we complete the scenario by discussing the dynamics of a non-singular

bounce along the lines of [18]. This is achieved by supplementing the ekpyrotic phase

with a phase in which the energy density is dominated by that of a ghost condensate [20].

The ghost condensate can violate the null energy condition [23], a necessary ingredient

to produce a bounce, without introducing ghost-like instabilities. The analysis closely

parallels that of [18], and thus we will be brief, referring the reader to our earlier paper for

details. A key difference, however, is that here it suffices to have only one field entering
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the ghost condensate phase, namely the ekpyrotic field φ; meanwhile χ is a standard scalar

field with canonical kinetic term throughout.

(i) Rolling of χ towards minimum. Before entering the ghost condensate phase, we

assume that χ gets stabilized. As described in the previous subsection, the production

of scale-invariant modes comes to a halt once corrections to the ekpyrotic potential drive

χ away from the tachyonic point. Such corrections are assumed negligible at early times

but become important for φ smaller than some critical value φek−end, where the subscript

indicates that this marks the end of the ekpyrotic phase for all practical purposes.

Subsequently we assume that χ rolls towards a stable minimum, denoted by χmin. For

instance, our fiducial correction term given in (6.7) generates a minimum at χmin ≈ χ0.

Note that the fermionic degrees of freedom which stabilized the field in the pre-ekpyrotic

phase now become heavy as χ acquires a non-zero expectation value. Thus they become

irrelevant and cannot be relied upon to stabilize χ in this post-ekpyrotic phase. Instead χ

rolls down and undergoes undamped harmonic oscillations around χmin.

The kinetic energy acquired by χ as it rolls away from the ridge is of course just given

by the difference in potential energy between χ = 0 and χ = χmin:

ρχ(tek−end) =
1

2
χ̇2(tek−end) = V (φek−end, 0) − V (φek−end, χmin) . (6.13)

If we assume for simplicity that χ is massive compared to Hubble,

V,χχ (χmin) ≫ H2 , (6.14)

then the field undergoes many oscillations in a Hubble time. Consequently, its energy

density, averaged over many oscillations, blueshifts as dust:

ρχ ∼ a−3 . (6.15)

Although this grows in time as the universe contracts, nevertheless ρχ quickly becomes

negligible compared to the energy density in φ, which keeps rolling down its steep quasi-

exponential potential. In other words, thanks to the ekpyrotic attractor mechanism, we can

tolerate ρχ ≫ ρφ at tek−end since φ will dominate again within a few e-folds of contraction.

These considerations impact on the allowed range of ∆θ, the change in angle in the

field trajectory as we exit the ekpyrotic phase. As shown in (6.12), this parameter enters

in the amplitude of density perturbations. Here we argue that a large change in angle is

indeed possible.

From the definition of θ in (6.2), we see that ∆θ ∼ O(1) is achieved provided

χ̇2(tek−end) ∼> φ̇2(tek−end) . (6.16)

Equivalently, since ρχ(tek−end) ≈ χ̇2(tek−end)/2 from (6.13) whereas ρφ ≈ p φ̇2/2

from (2.11), we need

ρχ ≫ ρφ at t = tek−end . (6.17)

The discussion of the previous paragraph shows that such a large ratio of densities is allowed

by the ekpyrotic attractor mechanism. In other words, χ can dominate momentarily as it
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Figure 6: Effective potential for φ at fixed χ.

rolls off the ridge and starts oscillating, thereby generating a significant ∆θ. Very soon,

however, φ will take over as it keeps rolling down its steep negative exponential potential.

Once χ is subdominant, the dynamics effectively reduce to that of a single field φ, and

the story is virtually identical to single-field ekpyrosis with NEC-violating ghost condensate

and non-singular bounce. The effective single-field potential is shown in figure 6. Region a)

describes a steep negative exponential potential corresponding to the ekpyrotic phase. A

necessary condition to violate the NEC is that the potential becomes positive. To see this,

recall that the onset of NEC-violation occurs when Ḣ = 0. And since M2
PlḢ = −φ̇2/2,

this also corresponds to φ̇2 = 0. But then the Friedmann equation, 3H2M2
Pl = φ̇2/2 + V ,

immediately tells us that V > 0. Thus the field must reach a minimum in V and rise

to positive values (region b)). Such a minimum and sharp rise can be achieved with our

ekpyrotic potential (5.12) plus the correction (6.7). The region c) corresponds to the ghost

condensation phase where the potential is approximately flat.

(ii) Ghost condensate phase and NEC violation. Our next consideration is the

epoch of NEC violation, triggered by φ entering a ghost condensate phase. This is achieved

by invoking higher-derivative corrections to the kinetic term for φ, which takes the form

L =
√−gM4P (X), (6.18)

where

X ≡ −(∂φ)2

2m4
(6.19)

is dimensionless. Here m and M are some mass scales to be determined by the fundamental

theory. As successful merger of ekpyrosis and ghost condensation, as we will see, requires

a large hierarchy: M ≫ m.
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Figure 7: Kinetic function for φ.

The ghost condensate relies on the kinetic function P (X) having a minimum at some

finite X, taken to be 1/2 without loss of generality, corresponding to φ̇ = −m2. In the

absence of a potential, X = 1/2 is an exact solution to the equations of motion, even in a

cosmological background.

What about the global form for P? During the ekpyrotic phase, φ is assumed to have

approximately standard kinetic term, corresponding to P (X) ≈ X. In order for fluctuations

to have positive norm, this quasi-linear part must lie to the right of the minimum, i.e. for

X ∼> 1/2 [18]. If the quasi-linear part lies at X ∼< 1/2, on the other hand, the field evolution

must go through a region with P,X < 0, corresponding to ghost-like fluctuations [18]. The

desired form of P (X) is sketched in figure 7.

In the process of climbing up the sharp rise in the potential, the kinetic energy in φ

decreases dramatically, and X is brought to the vicinity of the minimum of P (X) by the

time φ reaches the plateau. This marks the onset of the ghost condensate phase which for

convenience we will set at t = 0. Then, near the ghost condensate point we can expand

the field as φ = −m2t + π, leading to the following expressions for the energy density and

pressure:

ρ = M4 (2P, XX − P ) + V ≈ −M4Kπ̇

m2
+ V

P = M4P (X) − V ≈ −V , (6.20)

where K = P,XX . See [18] for details. (Notice that we have taken P (1/2) = 0 without loss

of generality since an overall shift in P is degenerate with a shift in V .)

The culprit in violating the NEC is the term linear in π̇, since its contribution to the

energy density does not have a definite sign. Put another way, the Ḣ equation is given by

M2
PlḢ = −1

2
(ρ + P) ≈ M4Kπ̇

2m2
, (6.21)

– 34 –



J
H
E
P
1
1
(
2
0
0
7
)
0
7
6

which clearly can take either sign depending on the sign of π̇.

(iii) Constraints for successful bounce. The successful merging of ekpyrosis with

ghost condensation imposes some constraints on the ekpyrotic potential.

Firstly, by assumption we must have X ∼> 1/2 throughout the ekpyrotic phase, that

is, φ̇2 ≫ m4. Because the kinetic energy grows during the ekpyrotic phase, evidently this

condition is most stringent at the onset of this phase: φ̇2(tek−beg) ≫ m4. And since φ̇2/2 ≈
−V during the ekpyrotic phase, this immediately implies: |V (φek−beg)| ≫ m4. For our

purposes we find it convenient to express this as a constraint on the value of the potential

at the minimum, denoted by Vmin ≡ V (φmin, χmin). From the scaling solution (2.11)

and (4.6), we have |V (φek−beg)| ∼ e−2Nek |Vmin|. Therefore we must require

|Vmin| ≫ e2Nekm4 . (6.22)

Secondly, by assumption φ must lie in the vicinity of the ghost condensate point by

the time it reaches the plateau, so that we can approximate φ ≈ −m2t + π. As shown

in [18], this gives an upper bound on Vmin, the value of the potential at the minimum:

|Vmin| ≪
M4K

p
. (6.23)

To summarize, the ekpyrotic field is successfully morphed into an NEC-violating ghost

condensate provided |Vmin| falls within the range

e2Nekm4 ≪ |Vmin| ≪
M4K

p
. (6.24)

Evidently this is satisfied provided M is exponentially larger than m. For instance, for a

reheating temperature of 1015 GeV corresponding to Nek ∼> 60 and p = 10−2, we can take

M ∼> 1016 GeV and m ∼> 103 GeV.

So far everything we have said is a review of aspects of ghost condensate/ekpyrosis

merger first discussed in [18]. A key difference with the two-field scenario of [18], however, is

that here we shall use only one field, namely φ, as ghost condensate, while χ is stabilized.

While this greatly simplifies the picture, there is an additional constraint to consider,

having to do with the energy density in the χ-oscillations, denoted earlier by ρχ. This is a

priori non-trivial since the latter blueshifts as 1/a3 as the universe contracts — see (6.15)

—, whereas the ghost energy density decreases since it violates the NEC. Nevertheless,

this is not a big concern for two reasons. As mentioned earlier, a few more e-folds of φ

rolling down its steep exponential potential after the end of the ekpyrotic phase makes ρχ

negligibly small compared to ρφ by the onset of the NEC-violating era. Moreover, from the

moment φ enters the ghost condensate phase until reheating, the scale factor a(t) changes

by at most a factor of order unity. Thus ρχ does not blueshift appreciably throughout the

NEC-violating epoch.

It remains to show that a(t) satisfies this property. Clearly this is the case from the end

of ekpyrosis until φ reaches the plateau, since everything happens almost instantaneously

on a Hubble time, by assumption. That this is also satisfied throughout the subsequent
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Figure 8: Evolution of the scale factor a(t) during the bounce generated by the ghost condensate.

The NEC-violating phase begins by definition when Ḣ = 0, which as shown in figure 9 occurs

around t ≈ 1.2 in these units. Meanwhile the bounce occurs by definition when ȧ = 0, which occurs

around t ≈ 2.4. The point is that in this time interval the scale factor is seen to change by a factor

of 2, from approximately 0.4 to 0.2. Note that we have set t = 0 to be the beginning of the ghost

condensation phase.

NEC-violating phase follows from requiring that the bounce occurs within at most a Hubble

time or so, which, as argued in [23], ensures that the Jeans-like instabilities intrinsic to

ghost condensation remain under control during the bounce. A numerical solution obtained

in [18] and plotted in figures 8 and 9 shows that the scale factor changes by approximately

a factor of 2 over the course of the NEC-violating phase. See the captions for details.

Consequently, ρχ blueshifts by a factor of 8 during this phase.

Meanwhile, it is easily seen that the ghost condensate energy density remains essentially

constant during this phase. To estimate its value, we assume for simplicity that the scaling

solution (2.11) holds all the way to the onset of the ghost condensate phase. In this case

we have

ρghost ≈ p |Vmin| . (6.25)

Therefore, ignoring the effect of the ekpyrotic attractor mechanism between tek−end until

tc, a sufficient condition to ensure the subdominance of ρχ during the bounce is

ρχ(tek−end) = V (φek−end, 0) − V (φek−end, χmin) ∼< 8p |Vmin| , (6.26)

where the factor of 8 comes from the blueshift of ρχ through the bounce, as described

above. In other words, the potential drop experienced by χ as it rolls towards its stable

minimum must be small compared to Vmin.

6.3 Summary

Let us summarize the sequence of events from the end of the ekpyrotic phase through the

non-singular bounce and onto the radiation-dominated hot big bang phase:
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Figure 9: Evolution of the Hubble parameter H(t) during the bounce generated by the ghost

condensate. The epoch of NEC violation starts when Ḣ = 0, which from the plot is seen to occur

at t ≈ 1.2. The bounce (H = 0) occurs at t ≈ 2.4. Note that we have set t = 0 to be the beginning

of the ghost condensation phase.

• The entropy field χ is eventually driven away from the tachyonic ridge, thereby

bringing to a halt the production of scale-invariant density perturbations. See figure 3.

This is achieved by a correction to the ekpyrotic potential (5.12), for instance of the

form (6.7), which has non-zero slope at χ = 0. For simplicity, we assume that the

departure from χ ≈ 0 occurs rapidly on a Hubble time, which requires a fast-roll

condition to be satisfied

|V,χ(χ = 0)| ∼> H2MPl . (6.27)

We denote by φek−end the value of φ at which |V,χ| starts being comparable to H2MPl.

• Subsequently χ rolls to a stable minimum denoted by χmin and undergoes oscillations.

As χ acquires a non-zero expectation value, the light fermions of the pre-ekpyrotic

phase become heavy and cannot be relied upon to stabilize χ. We also impose that

χ is heavy at its minimum,

V,χχ (χmin) ≫ H2 , (6.28)

so that its oscillations are rapid on a Hubble time. The energy density acquired by

χ, given by ρχ(tek−end) = V (φend, 0) − V (φend, χmin), blueshifts effectively as dust

and quickly becomes subdominant to φ.

• The evolution then reduces to single-field ekpyrosis. The end of the ekpyrotic phase

is triggered by φ reaching a minimum in the potential, which subsequently rises to

positive values where it becomes flat. We denote by Vmin the value of the potential

at the minimum, and by φmin the corresponding field value. Since stabilization of χ

is assumed to occur before φ hits the sharp rise, for consistency we must have

φmin ∼< φek−end . (6.29)
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• As φ climbs up the sharp rise of the potential, its kinetic energy decreases substan-

tially, which brings X to the vicinity of the ghost condensate point. This marks the

beginning of the NEC-violating phase. A successful synergy of ekpyrotic and ghost

condensate cosmology requires Vmin to fall within the allowed window

e2Nekm4 ≪ |Vmin| ≪
M4K

p
, (6.30)

where m and M parametrize the location of the minimum and curvature of the kinetic

function P (X), respectively.

• In order to have a bounce, the energy density in the ghost condensate, given by

pVmin, must dominate over the energy density in χ oscillations, ρχ. Since the latter

blueshifts by a factor of 8 or so during the bounce, this leads to the constraint:

V (φek−end, 0) − V (φek−end, χmin) ∼< 8p |Vmin| . (6.31)

These five equations are the main constraints to have a successful exit from ekpyrotic

phase followed by a non-singular bounce. In the next section, we illustrate how these

conditions can be fulfilled by studying a specific potential consisting of the ekpyrotic po-

tential (5.12) with the fiducial correction term (6.7).

7. A specific exit model

We now illustrate the constraints described in the previous section with an explicit choice

of potential. Our fiducial potential consists of two terms: i) the ekpyrotic potential (3.2)

which we assume has exact exponential form in φ; ii) the correction term (6.7) which

generates a minimum in φ and forces χ away from the tachyonic ridge. Thus the full

potential is given by

V (φ, χ) = Vek(φ, χ) + ∆V (φ, χ) , (7.1)

with

Vek(φ, χ) = −V0e
−

q

2
p
φ/MPl

(

1 +
1

pM2
Pl

χ2 + . . .

)

∆V (φ, χ) = U0e
−

q

2

p′
φ/MPl

(

1 +
1

p′M2
Pl

(χ − χ0)
2 + . . .

)

, (7.2)

where V0 and U0 are both positive, and, as earlier, ellipses denote higher-order terms in

χ which are irrelevant for our purposes. Note that we neglect the mass term for χ added

in (5.12). While this term is crucial in stabilizing χ early on, it becomes subdominant by

the onset of the ekpyrotic phase and remains subdominant forever after. The first term Vek

is the most constrained part of the potential since it pertains to the generation of density

perturbations, whereas there is considerable freedom in the correction term ∆V . We focus

here on this simple form for the latter given its manifest resemblance to the ekpyrotic piece.

The exponents satisfy p′ ≪ p, which guarantees that ∆V is negligible during the

ekpyrotic phase where φ is large. As φ decreases, however, eventually this term becomes

relevant and pushes χ away from the tachyonic point, triggering the end of ekpyrosis.
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7.1 Global minimum for V

This potential has a global minimum. Under some mild assumptions we can derive explicit

analytical expressions for the corresponding field values φmin and χmin. First note that the

condition ∂V/∂φ = 0 can be made nearly independent of χ if we assume that the O(χ2)

terms are small compared to unity, at least in the relevant range 0 ∼< χ ∼< χ0. (We will

check a posteriori that χmin ≈ χ0 so that this is indeed the range of interest.) Since p′ ≪ p

it is sufficient to impose
χ0

MPl
≪

√

p′ . (7.3)

And since p′ ≪ p ≪ 1 this says that the minimum along χ from the ∆V term lies at small

values compared to MPl. In other words, χ moves a small distance in field space as it rolls

away from the tachyonic point towards the minimum. We stress that this condition is not

necessary but is only imposed to simplify the expression for φmin. We find

φmin =
MPl√

2

√
pp′

√
p −

√
p′

ln

(
√

p

p′
U0

V0

)

. (7.4)

Next we can solve ∂V/∂χ = 0 for χmin by substituting the above expression for φmin

everywhere:

χmin =
χ0

1 − p′

p
V0

U0
e

“
q

2

p′
−

q

2
p

”

φmin/MPl

=
χ0

1 −
√

p′

p

≈ χ0 . (7.5)

It follows that ∆V plays the dominant role in determining χmin.

7.2 Exit from ekpyrosis: χ starts to roll

The next step is to find when χ starts to roll away from the tachyonic point at χ ≈ 0

towards the minimum at χmin ≈ χ0. As described in section 6.3, this occurs at a value

φek−end at which

|V,χ(χ = 0)| ∼ MPlH
2 . (7.6)

From (7.2) the left-hand side is given by

V,χ(χ = 0) = −U0e
−

q

2

p′
φek−end/MPl 2

p′
χ0

MPl
. (7.7)

Meanwhile, since the ekpyrotic phase is still going on until φ = φek−end, we can use the

scaling solution (2.11) to determine the right-hand side:

H2
ek−endM2

Pl ≈ pV0e
−

q

2
p
φek−end/MPl . (7.8)

Combining the above two expressions allows us to solve for φend:

φek−end =
MPl√

2

√
pp′

√
p −

√
p′

ln

(

2

pp′
U0

V0

χ0

MPl

)

. (7.9)

To summarize, for φ ∼> φend, a good approximate solution for χ is just χ ≈ 0. This

is the ekpyrotic phase, characterized by rolling in the φ direction while χ sits idle at the

top of the tachyonic ridge. Once φ reaches φend, however, we have |V,χ| ∼ H2MPl and

χ is pushed away from its unstable point. Subsequently we have |V,χ| ∼> H2MPl, thereby

satisfying the first condition (6.27) of section 6.3.
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7.3 Mass of χ about minimum

Once χ reaches χmin ≈ χ0, it undergoes oscillations about this stable point.The second

condition (6.28) ensures that the mass of χ around χmin ≈ χ0 is large compared to Hubble,

so that the field undergoes many oscillations in a Hubble time. For simplicity we assume

that φ is nearly still as χ rolls to the minimum, so that all relevant quantities can be

evaluated at φek−end.

Using (7.9) we obtain

V,χχ (φmin, χmin) =
pV0

M2
Pl

e
−

q

2

p′
φek−end/MPl

(

MPl

χ0
− 2

p2

)

. (7.10)

Evidently this must be positive if we want χmin to be a stable point by the time we reach

φek−end. The condition V,χχ(φmin) > 0 amounts to

χ0

MPl
<

p2

2
. (7.11)

Much like (7.3), this forces χ0 to be small in Planck units.

Using (7.8) we obtain

V,χχ (φmin, χmin)

H2
ek−end

=
MPl

χ0
− 2

p2
. (7.12)

Barring some fine-tuning between these two terms, this ratio is generically much bigger

than unity. It then follows that χ acquires a large mass at the minimum and oscillates

rapidly.

7.4 Exit happens before φ reaches minimum

Let us turn to the third condition, which requires that φmin ∼< φek−end. This ensures

consistency of the sequence of events assumed here, namely that χ starts to roll towards

its minimum, thereby imprinting the entropy perturbation onto ζ, before φ reaches the

steep rise in the potential. Again this assumption is not necessary — nothing prevents us

from converting the entropy mode into the curvature perturbation after the φ has reached

its minimum. However an estimate of ζ would probably require numerical analysis in this

case. In any case, comparison of (7.9) with (7.4) shows that φmin ∼< φend is satisfied if

χ0

MPl
∼> p3/2

√

p′ . (7.13)

Note that this condition is consistent with (7.3) and (7.11) since p′ ≪ p ≪ 1.

7.5 Energy density in χ oscillations

The last condition (6.31) puts an upper bound on the energy density in χ as it rolls to the

minimum and starts oscillating. As argued in section 6, this is just given by the difference

in potential energy between the ridge and the minimum — see (6.13). Since V contains
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exponential factors, evidently this difference is maximal in the limit φmin → φek−end. Thus

we find

∆V < V0e
−

q

2
p
φmin/MPl χ2

0

pM2
Pl

(

1 +

√

p

p′

)

≈ V0e
−

q

2
p
φmin/MPl χ2

0√
pp′M2

Pl

.

Meanwhile Vmin is to a good approximation given by Vek:

|Vmin| ≈ V0e
−

q

2
p
φmin/MPl . (7.14)

Now from (7.4) and (7.9) we see that the limiting case φmin = φek−end is achieved for

χ0 = p3/2
√

p′MPl/2. Thus the relevant ratio for condition (6.31) can be written as

∆V

p|Vmin|
≈ χ0

2MPl
, (7.15)

which has to be much less than unity. But this is clearly the case since (7.3) implies

χ0 ≪ MPl. It follows that the energy density in χ oscillations is parametrically small

compared to the ghost condensate energy density, thereby ensuring that the NEC is violated

for sufficiently long to cause a non-singular bounce.

8. Conclusion

The many aspects of ekpyrotic cosmology discussed in the paper all revolve around the

issue of initial conditions. Unlike the hot and chaotic beginning of inflation, ekpyrosis

proposes a cold and nearly vacuous initial state. Put more concretely, for GUT-scale

reheating temperature, the proto-inflationary patch is 10−27 cm big, whereas the initial

Hubble radius in ekpyrosis is of order 1 m. In the absence of a concrete theory of initial

conditions, however, both represent equally plausible initial states.

We have shown that ekpyrotic theory is equally successful as inflation in solving the

flatness and homogeneity problems of standard big bang cosmology. Indeed, the model

allows for initial curvature and anisotropic components comparable to that of the ekpy-

rotic field. Starting from these generic initial conditions, the universe emerges in the hot,

expanding phase with a high degree of spatial flatness, homogeneity and isotropy. Note

that this is very similar to how inflation addresses these problems — one envisions a uni-

verse that is essentially smooth and flat over the proto-inflationary patch, thereby allowing

cosmic acceleration to take over.

The two-field ekpyrotic model displays a tachyonic instability along χ, the direction

orthogonal to the field trajectory. Since fluctuations in χ by definition coincide with entropy

perturbations, this instability is essential in generating a scale-invariant spectrum. We

cannot get rid of it without spoiling the perturbation spectrum. We have shown that the

desired initial conditions at the onset of the ekpyrotic phase can be naturally achieved

with a pre-ekpyrotic stabilizing phase. By adding a small mass for χ and couplings to light
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fermions, χ gets stabilized well-before the onset of the ekpyrotic phase for a broad range of

initial conditions. The mass term is only important at early times — it becomes negligibly

small during the ekpyrotic phase and therefore does not interfere with the generation of

density perturbations.

The analysis of the tachyonic instability in terms of new field variables φ and χ lead

us to propose a simplified and more general version of the scenario. Instead of starting

from two scalar fields each with their own exponential potential, we can think of one field

φ rolling down an ekpyrotic direction whose evolution determines the tachyonic mass of a

second field χ. This occurs in such a way that fluctuations in the latter acquire a scale-

invariant spectrum. The (φ, χ) language allows for far greater freedom in specifying the

potential. Whereas the earlier (φ1, φ2) framework required two steep exponential functions

in the potential, here we only need one steep potential along φ and one coefficient in a

Taylor-expansion — the mass term for χ — to be such that the curvature of the potential

is approximately the same in either direction: V,χχ ≈ V,φφ. There is, therefore, enormous

freedom in specifying the global shape of the potential.

The simplified picture in terms of φ and χ has important consequences for the predic-

tions of the model, in particular for the spectral index and the level of non-Gaussianity. The

former now depends on an additional parameter δ that characterizes the deviation from

V,χχ = V,φφ. With vanishing δ, a pure exponential for φ leads to a slightly blue spectrum, in

disagreement with recent data. Allowing for non-zero δ, however, can make the spectral tilt

red even in this case. Turning to non-Gaussianity, we have argued that self-interactions

in χ have a natural cut-off scale of order Λ =
√

ǫMPl. Assuming coefficients of order

unity, the resulting level of non-Gaussianity is therefore high, corresponding to fNL ∼ 1/ǫ.

The consequences for current and near-future microwave background experiments will be

discussed elsewhere.

These achievements, we believe, together put the New Ekpyrotic scenario on a stronger

footing as a genuine alternative theory of early universe cosmology.
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